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Chapter 2 

Bridging Borders with FAIR Data:  

Transforming Digital Ecosystems for Maternal 
Health and Public Health Surveillance in Africa 

Samson Yohannes Amare 

Abstract 

This research documents an implementation study of a federated data 

architecture for managing patient data across eight African countries. 

The digital platform, deployed as a minimal viable product in 74 out 

of 88 signed-up health facilities, enabled localised data management 

with distinct entry forms prepared for one-time data entry. This 

process ensured the creation of FAIR (Findable, Accessible, 

Interoperable, and Reusable) data enriched with semantic and 

machine-readable features. Adaptations were made to accommodate 

country-specific resource constraints and regulatory frameworks. 

These choices were documented in a FAIR Implementation Profile 

and shared to make them globally accessible as practices for 

implementers along with specifications, which were made public. 

This process was supported by locally deployed tools as micro-

services, supporting FAIRification. Analytics derived from patient 

data contributed to more informed clinical decision-making and 

enhanced patient care. The availability of high-quality, FAIR-

compliant data enhanced research outcomes, supporting evidence-

based medical advancements. We found that the De Novo 

FAIRification of routine patient data through data visiting could be 

supported by workflows that are responsive to resource-limited 

African settings. The study found that the FAIR framework, which 

supports Ownership, Localisation, and Regulatory Compliance 

(OLR) of patient data, presents a viable new digital ecosystem that 

addresses challenges related to reusing sensitive, individual-level 

health data in low-resource settings. 

Keywords: De Novo FAIRification, FAIR by design, FAIR data, HMIS, 

patient data, digital health system, data visiting 
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Introduction 

Jochems et al. (2016) demonstrate that distributed learning facilitates 

the development of predictive models across multiple hospitals, while 

addressing data-sharing barriers. This approach enables the extraction 

and utilisation of routine patient data, while ensuring compliance with 

national and European data protection regulations. Using real-time 

digital patient data recorded by health workers in Kenya, Aksünger et 

al. (2021) identified key determinants of the continuum of maternal 

care, highlighting critical preventive actions for improved antenatal 

health outcomes. Dos Santos Vieira et al. (2022) found that rare 

disease patient data, which are highly sensitive, distributed across 

multiple registries, and managed by different custodians, often lack 

interoperability. Ensuring that data is Findable, Accessible, 

Interoperable, and Reusable (FAIR) at the source, both for humans 

and machines, enabled federated discovery and analysis across 

disparate databases, supporting accurate diagnosis, optimised clinical 

management, and personalised treatment.  

To realise the benefits of a federated approach to participant-level 

data reuse, Strawn (2021) stated that “it is necessary to understand the 

data before it can be used as training data” (p. 26), but concluded that 

“we cannot do this efficiently yet” (p. 27). He emphasised the central 

importance of the FAIR principles in enabling the reuse of federated 

data. The FAIR principles provide minimal standards and working 

implementations, which may eventually evolve into a fully integrated 

Internet of FAIR Data and Services (IFDS) (Schultes & Wittenburg, 

2019). The principles emphasise machine actionability, 

acknowledging that digital objects exist along a continuum of possible 

states and are utilised by computational agents (Wilkinson et al., 

2016). Ensuring effective digital object management that supports 

machine actionability requires the curation of detailed metadata, 

facilitating autonomous and computational data exploration and 

analysis.  

Despite acknowledging that the FAIRification of patient data can 

strengthen health systems by facilitating data reuse for improved 

insights, the role of semantics in machine interpretation is poorly 

understood (Strawn, 2021), and there is a lack of operational tools to 

support the implementation of FAIR principles. Stocker et al. (2022) 
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highlighted the lack of tools tailored to diverse technological and 

social contexts, which hinders the scalability and efficiency of data 

curation as machine-actionable assets. Developing a comprehensive 

digital platform architecture that enables machine-actionable FAIR 

data requires advancements in both technical and social domains.  

The lack of actionable tooling for FAIR implementation is critical in 

the African context, where few architectures have been tested (Van 

Reisen, Stokmans, Basajja et al., 2020; Lin et al., 2022). The health 

data reuse landscape in Africa is characterised by fragmented efforts 

that lack interoperability (Neumark & Prince, 2021). Data findability 

for care and research is limited, with little to no access control 

mechanisms, which limits trust in emerging or existing data reuse 

efforts. Van Reisen et al. (2021) and Van Reisen et al. (2022) outlined 

how FAIR data can be used to address fragmented data reuse efforts, 

thereby improving health services and research. 

Pointing to the relevance of a FAIR data ecosystem, Gregurick (2020) 

outlined a strategy in which FAIR resources would enhance 

treatments for affected newborns, develop new and improved 

prevention and treatment strategies, and optimise effective 

treatments. Building up the ecosystem requires FAIR Supporting 

Resources (FSR) (FAIRConnect, n.d.). This is “a resource that 

supports the FAIRification or FAIR Orchestration of data and 

metadata” (Gregurick, 2020).  

By systematically applying the FAIR principles and leveraging FSRs, 

addressing tooling gaps presents an opportunity to expand FSRs and 

develop context-specific solutions. This approach facilitates the 

development of tools and semantic frameworks that enhance the 

speed and scale of machine-actionable data curation. Ensuring that 

the tools themselves adhere to FAIR principles will contribute to the 

sustainability of IFDS (Amare, 2023).  

The FAIR principles outline a progressive pathway toward achieving 

machine-actionability, culminating in an optimal state in which 

machines can fully understand, utilise, and reuse digital objects. As 

machines navigate the data ecosystem, they should be able to read 

data and act autonomously on it by understanding a range of data 

types and formats, as well as various access mechanisms and 
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protocols (Wilkinson et al., 2016). An optimal state is defined by a 

machine’s ability to make informed decisions autonomously when 

encountering new data. Machine actionability applies to both the 

contextual metadata and the content of the digital object itself, with 

each existing along its own continuum of actionability (Wilkinson, 

2016). 

In scenarios where data is sensitive, personally identifiable, or pertains 

to non-data research objects, FAIRness can still be achieved by 

providing rich metadata that fully describes the digital object without 

requiring the publication of the data itself. This approach ensures 

compliance with FAIR principles, while maintaining ethical and 

regulatory standards (Wilkinson et al., 2016). 

The FAIR guiding principles outline 15 facets aimed at enhancing the 

process of making data FAIR for both human and machine agents, 

enabling efficient and accurate analysis of data from diverse sources 

(Wilkinson et al., 2016). FAIRification refers to the process of 

aligning meta/data with these guiding principles (Jacobsen et al., 

2020). Notably, the principles are technology-agnostic and do not 

prescribe specific standards, tools, or implementation solutions. 

Instead, they precede implementation choices, allowing flexibility in 

their application.  

As the FAIR principles do not dictate a specific sequence of steps for 

the FAIRification process, various experiences and recommendations 

have emerged regarding the best approach to achieve FAIR 

compliance. This variability reflects the principles’ adaptability to 

different contexts and use cases, while also highlighting the need for 

shared practices to enhance consistency, interoperability, and 

eventual convergence. This ensures that data is curated as FAIR and 

Federated, and AI-Ready (Strawn, 2021), which will accelerate the 

availability of inclusive, quality data pipelines that can serve the health 

system in creating use cases that can generate insights from the data 

by building quality models (Strawn, 2021; Amare, 2023). 

Jacobsen et al. (2020) developed a generic multiple-step workflow to 

help data FAIRification. Jacobson et al. (2020) and Groenen et al. 

(2021) explicitly position the FAIRification process at the beginning 

of data creation. The implementation study by Groenen et al. (2021) 
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follows those FAIRification steps in a process of FAIRifying data 

from an electronic data capture (EDC) system. Groenen et al. (2021) 

curated data on rare diseases—on which there is generally scarce data 

and can therefore benefit from the interoperability of data across 

multiple datasets—and made it “as open as possible and as closed as 

necessary”. 

This research investigated whether or not and how the De Novo 

FAIRification workflow could be effectively implemented for patient 

data curation in African settings, considering the need for relevance, 

specificity, and convergence to maximise the benefits of FAIR 

participant-level health data, with a focus on maternal and child 

health-related data. Specifically, the study investigated the potential 

for implementing FAIR-by-design data principles to enable data 

visiting and interoperability across diverse communities while 

maintaining context-sensitive and sustainable practices.  

Methods 

This research was carried out within the Value-driven Ownership of 

Data and Accessibility Network (VODAN) Africa research group. 

The VODAN research group supports a platform for the federated 

reuse of participant-level data from health facilities in Africa, 

representing a collective effort supported by universities, national and 

regional health ministries, and offices.  

We employed an ethnographic approach to address the ‘wicked’ 

problem of implementing the FAIR principles in practice and 

transitioning from a centralised data reuse approach to a federated 

platform for data reuse (Van Reisen et al., 2021). The research was 

conducted in select African health facilities, following principles of 

implementation science for adoption. 

This research facilitated the discovery of factors related to the success 

or failure of software development in a setting distinct from the 

mainstream implementation contexts in Europe and the US (Van 

Reisen, Stokmans, Basajja et al., 2020; Van Reisen, Stokmans, Mawere 

et al., 2020). Operating in research-limited contexts in diverse African 

countries allowed for an in-depth investigation into the design 

challenges and tooling requirements for implementing cutting-edge 

technology in low-digital-resource settings. Throughout the design 
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and conduct of the study, the research group actively engaged with 

health workers who are the primary users of the system and the data 

stewards who support them.  

Study location 

This study was conducted in eight African countries: Ethiopia, Kenya, 

Nigeria, Somalia, Tanzania, Tunisia, Uganda, and Zimbabwe. The 

initial deployment was prepared for 88 health facilities across 8 

countries. The actual deployment of the complete tool was realised in 

74 health facilities. The uptake of health facilities was more extensive 

than initially expected. In the original study design, a deployment was 

planned in 30 health facilities across 3 countries. The expanded 

uptake demonstrated health system stakeholders’ interest in the 

potential of FAIR curation of patient data, as no financial 

compensation was available to the health facilities, which had to bear 

the costs of implementation. 

Study timeline 

The study was carried out from January 2021 to December 2022. This 

study built on a previous study undertaken in 2020 and documented 

in a Special Issue of Data Intelligence (Van Reisen et al., 2022).  

Co-design approach 

The research employed a community co-creation design approach to 

develop the platform. The VODAN research group, which includes 

the VODAN-Africa chapter, is organised into a community of 

practice ecosystem. During the study period, VODAN Africa 

consisted of groups from the eight participating countries, which met 

virtually weekly, along with researchers from Europe and Asia. 

Community members representing the participating organisations in 

the eight countries were nominated in part because of their data 

stewardship competency and their experience working closely with 

health facilities in their respective countries to facilitate cross-country 

learning. The virtual, cross-regional meetings provided VODAN 

chapters with the opportunity to share progress and experiences and 

to collectively resolve challenges experienced during the 

implementation of the FAIRification and federated data reuse 

pipelines. Additionally, country chapters met regularly, both in person 

and online. In WhatsApp community groups, participants regularly 
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posted about their work, progress, challenges, and opportunities, 

serving as a record of the work. The weekly meetings were video-

recorded and available to all community members, serving as further 

records of the implementation process. The documentation from the 

implementation process was archived as a resource for the research 

community. 

Teams established in each country represented in the VODAN Africa 

research group had one or more country coordinators. The 

coordinator was responsible for building the network in each country, 

keeping the ministries and bureaus of health informed, implementing 

introductions and follow-up activities, ensuring the deployment was 

implemented, and monitoring the FAIR data production. The 

country coordinator was responsible for ensuring regulatory 

compliance at both the national and regional levels, as well as for 

creating conditions that facilitated the execution of activities in their 

respective health facilities and research centres. To translate 

principles into practice, community members discussed 

implementation decisions to reach a consensus with their respective 

communities on the FSRs to be created or reused, as well as on the 

data pipeline to be established. The country coordinators were 

responsible for documenting and following up on the 

implementation research. In countries with multiple coordinators 

covering different regions, the coordinators worked together. 

The community was organised with specialised technical teams 

focusing on (i) semantic data modelling and linkage, (ii) software 

tooling, (iii) training/data stewardship, and (iv) deployment.  

Reusing existing tooling for open science 

Our approach to building cross-facility interoperability and federated 

data reuse (Sanders, 2008; Sanders & Stappers, 2014) focused on 

creating a high-quality data pipeline that adhered to the FAIR guiding 

principles, while translating these principles into the use and 

adaptation of products and services that help produce FAIR data. We 

used FAIR Implementation Profiles (FIPs) to provide a structured 

approach for documenting the choices made to implement each of 

the 15 principles and to offer guidance for implementing the 
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FAIRification workflow using FSRs, which encompass software 

systems that facilitate the production of FAIR data.  

The co-design of a minimum viable product (MVP) platform 

followed a phase of testing a proof of concept and the deployment of 

a data production tool developed by the Data Stewardship Wizard 

(DSW) (Van Reisen et al., 2022). Following the assessment of this 

phase, the VODAN Research group conducted an evaluation that led 

to the development of requirements and specifications (VODAN, 

2021). The requirements and specifications included the use of the 

Center for Expanded Data Annotation and Retrieval (CEDAR) 

Workbench for metadata template creation and AllegroGraph as a 

triple store. The choice reflected the situation at the start of this 

research when just a handful of open-source tools were available for 

FAIRification, including DSW and CEDAR. The selection of 

CEDAR was based on the requirement that data would be entered in 

the health facility only once for multiple functional operations, as well 

as for multiple functional operations in a De Novo FAIRification 

workflow (VODAN, 2021). 

In the engineering of the platform for patient data curation, the 

modus operandi was to identify available tools and test them for use 

in curating patient health data within health facilities. The practicality 

of deploying tools in situational settings for patient data curation was 

assessed by identifying available tools and testing them for use in the 

curation of patient health data in healthcare facilities, as well as 

evaluating their practicality in situational settings. Beyond the 

deployment of such tools, making them work in harmony requires 

building an interoperability framework at the data, application, and 

process levels. 

Following the analysis of the FSR landscape and the needs of the 

health facilities, adaptations were engineered. In cases where no 

tooling was available to respond to users’ needs or existing tools were 

required to perform beyond their initial design, new tooling was 

programmed according to specifications produced for the specific 

tool. 

All engineering efforts were carried out using Free and Open Source 

(FOS) platforms and freely available assets. This corresponds with the 
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general philosophy of Open-Source (FOS) platforms and freely 

available assets, in line with the values of FAIR Open Science. The 

use of non-proprietary, free, and open-source software is an enabler 

in the deployment of extensive automation systems. This approach 

enables the deployment of extensive automation systems while 

avoiding large payments to suppliers and ensuring sustainability (May 

et al., 2006). The engineering choices recognised the digital reality in 

different places as well as the social and regulatory situation. 

Data selection 

The patient data selected for FAIRification included data from 

antenatal care (ANC) service registries and outpatient departments 

(OPDs). Most health facilities in Africa are required by their 

respective ministries to prepare a routine health management 

information system (HMIS) report. This report is prepared in many 

countries by encoding aggregate data into a software system known 

as the District Health Information System 2 (DHIS2). The HMIS 

registries were identified as suitable for data entry, particularly given 

that in the majority of health facilities, the first digitisation of data 

occurred in a DHIS2-compatible format and that all countries had 

some DHIS2-related registration responsibilities.  

Regulatory and privacy preservation concerns 

To ensure regulatory compliance, the VODAN research team 

conducted a study to measure the equivalency of the country’s 

regulatory and policy framework with the FAIR data principles (Van 

Reisen et al., 2022). In addition to the FAIR Equivalency analysis, the 

ministries of health and the relevant bureaus of health were informed, 

and permission was requested for the study, which is typically granted 

through an exchange of letters. A data use agreement was signed with 

the administrator at each health facility, the relevant ministry or 

bureau of health, the Country Coordinator of VODAN, and 

VODAN’s Executive Coordinator. The data use agreement outlined 

in detail how the data were curated and reposted, as well as the 

processes run over the data. The agreement referred to the European 

Union’s General Data Protection Regulation (GDPR) as a binding 

reference document on personal data protection, ensuring data 

privacy and security.  
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Relevance of the study 

Public health crises, such as Ebola, have made it evident that having 

a robust federated data reuse system in place enables the timely 

detection and response to local and global health challenges, thereby 

substantiating the need for federated data (Van Reisen et al., 2021). 

The COVID-19 pandemic highlighted the urgent need for innovative 

global interventions, robust data pipelines, e-learning platforms, and 

other digital solutions to mitigate the impact of cross-border 

epidemics and pandemics in Africa and beyond. 

The FAIR principles have been widely adopted in policies and 

practice (Stocker et al., 2022) and are regarded as enhancing the 

management, utilisation, and reusability of health data (Lin et al., 

2022). Although the European Union has adopted the FAIR 

principles as the gold standard for data sharing and other forms of 

reuse (Guillot et al., 2023), these principles lack comprehensive 

technical guidance for their practical implementation (Stocker et al., 

2022). 

The concept of the IFDS builds on the FAIR principles by 

emphasising the integration of FAIR-aligned data and services within 

a unified digital ecosystem (Van Reisen et al., 2021). This approach 

extends the application of FAIR principles beyond scientific data 

assets to include the curation and integration of any data relevant to 

achieving FAIR operability. As such, the IFDS introduces the 

potential to enhance the quality and utility of patient data through 

FAIR-aligned practices. The implementation of the IFDS as part of 

the COVID-19 response leveraged the work of Babcock et al. (2021) 

on creating a linked ontology for infectious diseases. 

Making large healthcare datasets available for federated reuse in 

research related to analytics and discovery is a novel challenge. 

Research environments that prioritise privacy-by-design for health 

data reuse, such as the Netherlands’ Personal Health Train (PHT), are 

gaining popularity to support federated learning, aided by tools for 

data exchange, including the Fast Healthcare Interoperability 

Resources (FHIR) (Gebreslassie et al., 2023). Software tools that take 

data protection and privacy requirements into account from the start 

have the potential to address issues of access to sensitive patient 

health data (Zhang & Kamel Boulos, 2022).  
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Analytical framework 

De Novo FAIRification, also known as FAIR-by-design, is a 

workflow where data is enhanced with semantic properties and made 

into machine-readable assets from the outset, during the creation of 

the digital data instance. This approach is proposed and followed by 

Jacobson et al. (2020) and Groenen et al. (2021). In contrast, other 

work follows FAIR by increment, implementing the FAIR principles 

retrospectively for legacy data. An example of FAIR by increment is 

the work by Smits et al. (2025), published in this volume.  

Mature FSRs support FAIRification processes and facilitate 

convergence among implementers. That said, the documentation and 

exploration of FAIRification tools, techniques, and practices is 

underdeveloped. This study addresses the critical need for software 

tools that operationalise the FAIR principles, either by design or 

increment. While Jacobson et al. (2020) and Groenen et al. (2021) 

describe a FAIRification workflow which can provide the basis for a 

structured and generalisable approach to data management on patient 

data generated in clinical settings, their work only supports a FAIR-

by-design approach and their proposed workflows have not been 

tested in the African context (Van Reisen, Stokmans, Basajja et al., 

2020). The absence of a solution tested in various contexts and with 

legacy data collection processes in health facilities underscores the 

necessity of context-specific adaptations to achieve scalable and 

sustainable FAIR-compliant data systems, which are more cognisant 

of a situation where data has a legacy (Jacobsen et al., 2020; Basajja & 

Nambobi, 2022) 

To enable FAIRification in various locations and countries across 

Africa, a new level of FAIRness, referred to as FAIR-Ownership of 

Data in Locale with Regulatory Compliance (OLR), was developed 

(Van Reisen et al., 2023). This approach identified the federated 

aspect of a FAIR architecture as fundamental. FAIR-OLR enables 

data to be owned by the entity responsible for its production, held 

locally, and maintained in compliance with regulatory requirements in 

the location where the data resides. The OLR principles strengthen 

the component of FAIR data sovereignty, acknowledging that FAIR 

data is fundamentally federated and AI-ready. 
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Workflow specifications and requirements 

Data-driven platforms can facilitate making health data FAIR. The 

FAIR Guiding Principles serve as a framework for the data 

FAIRification process (Wilkinson et al., 2016). The workflows for 

their realisation by (Jacobsen et al., 2020) include the following steps: 

(1) identify the FAIRification objective, (2) analyse the data, (3) 

analyse the metadata, (4) define a semantic model for data (4a) and 

metadata (4b), (5) make data (5a) and metadata (5b) linkable, (6) host 

FAIR data, and (7) assess FAIR data. Jacobson et al. (2020) and 

Groenen et al. (2021) both recommended five phases of De Novo 

FAIRification: (1) the pre-FAIRification analysis, (2) facilitating 

FAIRification, (3) data collection, (4) FAIR data generation and (5) 

FAIR data use in the FAIRification of data from a registry. 

The parameters for implementing the FAIRification workflow in this 

study were informed by several contextually relevant challenges 

identified by the VODAN research community, following the 

analysis of the first proof of concept for federated data reuse (Aktau 

et al., 2025; Van Reisen et al., 2021). The outcome of the assessment 

was translated into a set of parameters dictating the engineering 

process, referred to as specifications and requirements. These 

included: 

 One-time data input: The data is curated at the point of creation. 

 Multi-pronged functionalities: The data-interoperability and reuse 

algorithms are run over FAIR-curated data, enriched with 

semantic meaning and machine-actionable capabilities, 

allowing for multiple functionalities to be handled across 

FAIR data assets. 

 Federated storage: The data is handled in the repository of the 

entity responsible for data quality, data control, and data 

processing. 

 Cross-country FAIRification: The community applies 

FAIRification with curation processes that maximise 

FAIRness, including interoperability, across countries. 

 Data curation to enhance value in the place where the data is 

produced and handled: Enhancing the value of the data for 
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stakeholders at the entity where the data is produced and 

managed is a primary goal of these investments. 

 Data provenance for data quality: Clear data provenance is 
assigned in the curation process, which enhances the quality 
of the data and trust in the overall system. 

 Data visualisation in the place of data production: Dashboards 
displaying insights from patient data in health clinics are 
crucial for the usability of the data in primary clinical 
processes. 

 Data value is retained in the place handling the data: The VODAN 
research group found that ensuring data quality is managed at 
the point of creation helps retain its value at the original 
location (VODAN, 2021).  

Platform development 

The requirements and specifications formulated by VODAN (2021) 

served as the basis for the parameters used in engineering the 

platform’s development and deployment. The development was 

carried out in three stages. In the first stage, the requirements and 

specifications (VODAN, 2021) were translated into the architectural 

and strategic development of an integrated environment that enabled 

the collection, processing, analysis, and sharing of data. The resulting 

scalable, interoperable, and secure infrastructure supported various 

data science workflows, tools, and stakeholders. 

Key components of the platform included: 

 Data ingestion and integration: Facilitating the production of data 
from multiple sources, in this case, 88 health facilities across 
8 countries 

 Storage and management: Establishing distributed data 

repositories for each health facility, controlled locally by the 

health facility, while ensuring accessibility 

 Processing and computation: Supporting data transformation to 

metadata with clear data-mappings 

 Interoperability and FAIR principles: Ensuring that data is FAIR 

across different systems and organisations 
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 Security and compliance: Implementation of governance policies, 

access control, encryption, and compliance with relevant 

regulations, including the GDPR and national data protection 

laws 

 Analytics and artificial intelligence (AI) deployment: Providing tools 

for exploratory data analysis, visualisation, and machine 

learning (ML) deployment, as well as automated pipelines 

 User interface and collaboration: Providing dashboards, 

application programming interfaces (APIs), and collaborative 

tools to support data scientists, analysts, and policymakers in 

implementing queries on the metadata 

In the second phase, to the extent possible, available resources were 

identified to support the development of the platform. We tested 

various components and deployment approaches, with a focus on 

FSR, to support the specific challenges faced by health facilities in 

low-resource settings, as was the case for the initial VODAN Africa 

deployment.  

In the third phase, the modus operandi for facility-specific 

deployment of federated data reuse was prepared. We analysed the 

implementation decisions that led to the specific digital setup at each 

facility, including how the deployment varied across facility 

characteristics. 

Findings 

In this section, we discuss: the design of the overall platform, the 

engineering of tools to make the platform operational with different 

elements connecting the components of the platform, and the facility-

level adaptations for final deployment in varying contexts.  

Facility-specific platform development 

Based on requirements identified through structured conversations 

with different stakeholders at each health facility, FSRs were bundled 

to ensure availability at health facility locations. Each facility had a 

localised deployment of essential software systems, including the 

CEDAR Workbench, a bulk upload tool, an internal dashboard, and 

access to an external dashboard. To support knowledge graph storage 
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and capabilities, some facilities also installed AllegroGraph, a triple 

store, depending on service availability. 

At the central level, an external dashboard was developed to which 

facilities periodically synced aggregate statistics. This central server 

hosted publicly available, aggregated data and additional platforms, 

including AllegroGraph, which enabled remote queries on de-

identified, shared data triples using the SPARQL Query Language and 

the Resource Description Framework (RDF). The central 

infrastructure also supported federated analytics and federated 

learning. The main components of the platform are illustrated in 

Figure 1. 

 

Figure 1. VODAN Africa architecture for FAIR infrastructure in 

health facilities  

Source: Amare et al., 2023 

The main components included a metadata processing component, a 

data curation component, a data visualisation component (internal 

clinic and VODAN community dashboards), query functionality 

using a triple store, and reporting components. The platform 

employed a modular approach, allowing each facility to deploy 

different components of the architecture. 

Building on the experience of the VODAN research network, the 

Ubuntu operating system was selected as the platform host. Its open 

architecture facilitated the seamless integration of various systems, 
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enabling them to be packaged as a unified, easily installable, and user-

friendly solution for data stewards. 

To ensure the data were FAIR, a metadata template engine was 

implemented using the CEDAR Workbench. Once created, metadata 

templates were hosted in the FAIR data producer to enable FAIR 

data production. The data source provided input to the data producer. 

Data available in hardcopy were encoded into the FAIR data 

producer. A bulk upload tool was used when legacy data were only 

available in soft copy. Aggregate reports were computed and synced 

with DHIS2 to support required HMIS reporting, making the systems 

interoperable. Identified aggregates, based on data collected through 

the system, were displayed on a dashboard. The data and metadata 

were curated in the form of triples and stored in a triple store. 

Metadata were made available through a FAIR Data Point to foster 

findability and accessibility.  

Templates for controlled vocabulary, semantic data model and 

linkage 

To initiate the FAIRification process, data instances must be 

processed to link them to structured terminologies, allowing for the 

determination of relevant metadata labels. A vocabulary development 

process was carried out by undertaking a detailed analysis of HMIS 

paper-based forms. In most instances, this paper-based registry was 

digitised by the clinic’s data clerk. The digitised instances serve as a 

source of data for the DHIS2 system, the production of which is, in 

most countries, a legal requirement for facilities by the relevant 

ministry of health. 

The FAIRification of DHIS2 templates focused on OPD and ANC 

forms. In some countries, including Uganda and Ethiopia, these 

HMIS abstract registers were standardised across all clinics. In others, 

like Nigeria, variations existed within the country despite the 

ministry’s efforts to standardise them. HMIS reporting forms also 

differed between countries. The DHIS2 template forms were 

compared on all the variables in the fields. Subsequently, for each 

form, each variable, along with its corresponding questions and 

responses, was meticulously examined to identify the relevant 

vocabulary that could be used for designing the metadata template in 

CEDAR. 
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CEDAR enables the creation of templates through an intuitive drag-

and-drop, machine-actionable (meta)data collection template 

designer. The platform uses the CEDAR Workbench as a data and 

metadata template engine. For each unique form, a separate template 

was created in CEDAR. Each template was set up to create the 

metadata by selecting vocabularies for each field. A list of controlled 

and preferred vocabularies was established during the vocabulary 

identification and selection process to represent each field and 

enhance interoperability. The CEDAR system is linked to BioPortal, 

which allows it to utilise semantic ontologies in the design process of 

the data curation templates. BioPortal enables selection from other 

Common Data Model (CDM) standards and well-established clinical 

vocabularies, such as Systematized Nomenclature of Medicine 

Clinical Terms (SNOMED-CT). Within a given template, each field 

was linked to preferred semantic ontologies identified in BioPortal. 

CEDAR then automatically assigns a unique Uniform Resource 

Identifier (URI) to each field. The list of controlled vocabularies and 

preferred ontologies was compiled in an Excel spreadsheet, and the 

ontologies were subsequently reposted in the VODAN Africa portal 

for easy selection by other groups, encouraging FAIR convergence. 

As shown in Figure 2, when new terms needed to be selected, they 

were created using an Excel sheet format based on the Simple 

Knowledge Organization System (SKOS) framework and 

subsequently transformed into RDF format via SKOS Play. RDF 

identifies a data-instance as a triple, an object-predicate-subject 

structure. The transformation of the data instance through SKOS 

resulted in an RDF Terse Triple Language (TTL), also known as 

Turtle, file. This results in a serialised description of the RDF triple 

graph of the instance, which identifies URIs and International 

Resource Identifiers (IRIs). This process links URIs and IRIs to value 

properties, which gives semantic meaning to the novel data instance. 

The novel triple was then uploaded to BioPortal to enable open 

ontology searches. It was further used for template creation in 

platforms such as CEDAR Workbench, Research Electronic Data 

Capture (REDCap), and other systems. The VODAN Africa portal, 

created based on OntoPortal, assembled the new ontologies. The new 

ontologies were also published on GitHub. 
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Figure 2. New vocabulary creation through CEDAR  

Source: Haixia Li and Li Yan, 2021, used without modification 

The template designer provided functionalities, such as auto-

completion and drop-down menus, which allowed users to select 

from controlled vocabularies created earlier during data production. 

The template was used to populate data based on controlled 

vocabularies and semantic ontologies, and the output was encoded in 

JavaScript Object Notation for Linked Data (JSON-LD) as well as 

RDF formats. 

The data were stored in a massive database, MongoDB, a document-

based NoSQL (AKA ‘not only SQL’) database. Unlike traditional 

relational databases that use structured, rule-based tables, NoSQL 

databases store data in a non-tabular format. This approach supports 

high-volume data applications, content management systems, real-

time analytics, Internet of Things (IoT) applications, and distributed 

applications that require high data availability and reliability. NoSQL 

database approaches offer more flexible and efficient query 

functionality compared to relational databases. 

The platform prepared for each health facility was preloaded with 

templates tailored to the facility’s specific requirements. This allowed 

for a controlled and standardised manner of collecting patient data 

reporting formats from the health facilities that was responsive to the 

health facility’s specific needs while fostering interoperability in 

participant-level data and metadata at the cross-hospital level. 
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Repository as knowledge graphs 

Through the semantic model and linkage, the linked data presented 

as knowledge graphs were placed in residence. For better provenance 

and ownership, the data were stored and made available for remote 

query in triple stores hosted in the health facilities. The data was 

stored in the form of RDF triples in a graph database named 

AllegroGraph. These data were made available for local and remote 

queries through a SPARQL endpoint. SPARQL is a query language 

and protocol used for retrieving and manipulating data stored in RDF 

format. It enables users to extract information from databases or any 

data sources that can be mapped to RDF. SPARQL is accessible via 

an API, allowing external or internal systems to integrate directly into 

the knowledge graph. Health facilities contribute to data and 

knowledge sharing by establishing appropriate linkages within their 

datasets using a well-defined semantic model, which serves as the 

foundation for the knowledge graph of the data available within and 

across facilities. 

Access and reuse of FAIR data  

Data access and control mechanisms were defined to enable 

authorised users and other systems to access the system through an 

API or by direct login. Access levels were defined at various levels, 

including the repository level and the single triple level. 

The platform prepared for each health facility was preloaded with 

templates tailored to the facility’s specific requirements. This allowed 

for a controlled and standardised manner of collecting patient data 

reporting formats from the health facilities.  

A semantic data model was developed based on a systematic review 

of HMIS registers across various countries, considering local 

reporting requirements and data collection needs. Figure 3 provides a 

high-level overview of the development of the federated data reuse 

platform, including the FAIRification process. 
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Figure 3. Platform development and FAIRification approaches 

followed in creating the VODAN Africa platform 

Semantic data modelling plays a crucial role in enhancing data 

interoperability, enabling remote querying, and supporting 

comprehensive data analytics both within individual healthcare 

facilities and across multiple institutions. 

To ensure data control and sovereignty as well as promote localised 

usage, data was required to be stored in residence at the point of 

production and primarily used within the originating facility. For this 

purpose, data was stored in the selected triple store tool, 

AllegroGraph. The process ensured that knowledge graph-based 

remote querying and analytics were supported, while the data 

remained within its original location. Access and control mechanisms 

were implemented at the port of the store in each facility, through 

data use agreements, and at the granular level, allowing permissions 

to be assigned at the level of individual triples. Additionally, the data 

was stored in other databases, including MongoDB, and was 

accessible through an internal dashboard. The internal dashboard was 

designed to enhance data ownership and usability for local 

stakeholders, providing them with direct access to data and actionable 

insights tailored to their specific needs. 

Integration and development of platform components 

To curate the FAIR (meta)data, CEDAR was used in the health 

clinics by installing it in the residence where the data was produced 

and curated. The registers were converted into CEDAR templates, 

which used controlled vocabularies during the process. 

Bulk upload 

To expedite the data curation process, it was necessary to upload the 

backlog data in bulk. Although the CEDAR system lacked the 
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functionality to upload data in bulk, its robust API allowed the 

research team to develop a tool that enabled bulk input. This tool 

enabled FAIR-by-increment, also known as post-hoc FAIRification. 

The bulk upload tool has integration points with CEDAR, 

AllegroGraph, and DHIS2. It utilises an API key from each of the 

applications and sends GET and POST requests. The bulk upload 

tool retrieves data from CEDAR, where the one-time data entry 

occurs, and posts it into AllegroGraph. The bulk upload tool uses the 

triple store API to convert Comma-Separated Values (CSV) legacy 

data into the knowledge graph. 

 

Figure 4. CSV file BulkUpload process of VODAN platform 

Figure 4 shows how the VODAN platform can bulk upload data in 

CSV format to the local and remote deployments of CEDAR using 

its API. 

The tool converts the data it reads from the database into triples. In 

cases where it reads from relational databases and CSV files, the 

conversion is performed by making the row ID/Object ID the 

‘subject’, the column names the ‘predicate’, and the cell value the 

‘object’. In each of the subject-predicate-object triplets, the system 
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retrieves their equivalent URI or IRI by searching through the 

controlled vocabulary file stored in BioPortal or an offline file.  

The system also receives requests from CEDAR and retrieves data 

for reporting purposes. The system does a computation to create an 

aggregate report. Through a POST request using the DHIS2 API, the 

report is posted in DHIS2. A JSON template used for reporting in 

DHIS2 was used to map the aggregate reports to the HMIS. 

The bulk upload system also enables the direct posting of RDF triples 

created in CEDAR to AllegroGraph. To accommodate previously 

entered data in CEDAR, the system utilises Allegro Graph’s API and 

makes a POST request to create the knowledge graph based on the 

data in CEDAR. The bulk uploaded data can also be converted into 

triples, similar to how data can be extracted from relational databases 

and then loaded into a triple store in real time.  

The tool for bulk FAIRification was then enhanced to add more 

features, including the ability to bulk upload to a triple store such as 

AllegroGraph and backup and restore functionality. Other features 

requested by the health facilities and the data stewardship team, such 

as integration with DHIS2, were added. As shown in Figure 5, the 

bulk upload tool also features the ability to reuse templates created in 

the remote CEDAR (online version) for use in a locally deployed and 

fully offline CEDAR system. The CEDAR system, hosted in the 

cloud, enables users to create data and metadata templates that can 

then be shared with other cloud users. 
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Figure 5. Tool to automatically load prepared templates from the 

central CEDAR platform onto the local installation 

Initially, the localised version of CEDAR did not allow for the export 

of templates. The templates created by the data stewardship team had 

to be deployed on the localised systems, which meant recreating 

them. As there were many forms, creating a script in the system was 

more straightforward than migrating the templates to the local 

version. Using the bulk upload tool, a practical workaround was 

created. The template creation was done at metadatacenter.org and 

stored in JSON-LD format. We downloaded the templates from the 

remote CEDAR deployment and recreated them locally using an 

automated script that leveraged both APIs. This approach enabled a 

rapid rollout, which was practical given the large number of health 

facilities and templates needed. Alternatively, the JSON can be copied 

manually, saved locally, and synced with the installed tools. 

Different countries had different needs based on their infrastructure. 

Tigray in Ethiopia, one of the implementation sites, had low 

connectivity and, in addition to having limited resources, experienced 

a total communication blackout and war during the implementation 

study. The FAIRification of existing research and clinical data was 
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carried out by preparing the data in a CSV file and uploading them 

using the bulk upload tool to CEDAR. The data were then visualised 

on the dashboards and could be queried using SPARQL. 

CEDAR stores the data created via the templates in MongoDB in the 

form of JSON-LD. This data can be read directly by the system by 

adding the MongoDB extension to Laravel. The system was also 

made available as open-source software, providing a reusable FSR. 

MongoDB, a NoSQL database that utilises a document-based format 

and serves as a data source across various platforms, thereby 

enhancing interoperability through its schema-less design and 

widespread adoption for healthcare data. 

Data visualisation component 

In addition to data reuse for reporting requirements, healthcare 

workers wanted to utilise the data produced by facilities for clinical 

decision-making. VODAN Africa worked with local stakeholders to 

develop internal dashboards that reflected the specific clinical 

decision-making priorities for that health centre. The internal 

dashboard provided frequencies based on FAIR data generated by 

data stewards and health professionals, ensuring instant visual 

feedback on their work performance, including daily visits and other 

statistics chosen per discussions and agreements made through the 

data use agreement. In contrast to data curation activities prior to the 

initiation of the VODAN Africa federated data reuse platform, where 

data were produced for and reported to external groups, like 

ministries of health, through facilitating the reuse of their data for 

patient care, these dashboards posited clinics and hospitals as both 

data generators and the primary beneficiaries of data reuse, prompting 

them to produce more data of higher quality. Data were reused where 

they were initially produced, ensuring the appropriate distribution of 

benefits to data providers.  

Aggregate statistics were shared and displayed on the external 

community dashboard, shown in Figure 6. The community 

dashboard refers to the external dashboard of VODAN, presenting 

aggregate statistics aggregated from data across participating hospitals 

to facilitate cross-facility inference at the regional, national, or cross-

national level,  
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Figure 6. Screenshot from the external dashboard – the VODAN 

community dashboard  

Source: https://vodana.health/ screenshot 23 March 2024 9:45 

The VODAN community dashboard demonstrated the potential for 

sharing relevant information within the network and conducting 

cross-border showcases, highlighting the possibility of sharing 

information and performing surveillance, with data stored and in and 

under the control of the health facility. The system also features an 

API that allows interested parties to access and connect with the 

dashboard and the data system in VODAN Africa. 

Remote queries component 

The federated architecture ensures data production and use in a 

federated manner without compromising data provenance or its 

residency. The data is exposed as metadata in a linked data format, 

stored as subject-predicate-object triples within a knowledge graph. 

Remote queries can be performed on the RDF data hosted in health 

facilities using SPARQL. AllegroGraph was used to store the 

knowledge graph through which the query was being processed. 

AllegroGraph also allowed visually created queries and visualisation 

of the resulting knowledge graph and was used for the initial 

exploration of the clinical data that was also made available for 

research. 
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Terminology service  

The use of ontologies facilitated the creation of templates and the 

data production process. When there were no standardised 

ontologies, the VODAN platform integrated with the BioPortal 

terminology server. Controlled vocabularies were publicly hosted in 

the portal and were accessed using an API based on the associated 

API key. Depending on the context, the vocabularies were either 

fetched directly through the API or stored for offline use in the 

facilities when Internet connections became an issue.  

The integration code was written as part of the bulk upload tool. It 

utilises the API key associated with BioPortal to fetch data and 

metadata that would otherwise be inaccessible. The terminology 

service in CEDAR was natively integrated with vocabularies on 

BioPortal. The lightweight application and bulk upload system used 

the terminology server, which required a script to access the terms 

using a GET request from BioPortal, leveraging users’ API keys.  

Extract transform load component 

Different scenarios can use the data extract, transform, and load 

(ETL) service to migrate legacy data into the knowledge graph. Data 

stored as files or from other legacy systems were transformed into 

triples and stored in the knowledge graph. The data extraction 

process for the My Structured Query Language (MySQL) server data 

followed the platform’s interaction to read from the database, 

transform the data, and load it into both MongoDB in CEDAR and 

AllegroGraph. 

Federated learning infrastructure 

To enable federated learning, also known as remote data science, the 

required software infrastructure needed to be set up. Python libraries 

were installed in the computers used for FAIR data production in the 

facilities. To facilitate the installation process and accommodate new 

deployments, a remote installation script was developed. The PySyFt 

library was used for federated data reuse due to its free and open-

source nature and since it has a strong, active, and responsive support 

community on Slack and other platforms.  
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HMIS linkage component 

The data curated in the VODAN platform primarily came from 

abstract registers, which serve as inputs for HMIS reports. Health 

technology professionals, nurses, and other HMIS-related health 

workers use tally sheets to count and compile HMIS monthly and 

periodic reports. To facilitate the acceptance of FAIR data curation, 

the system was made interoperable with DHIS2, one of the most 

widely adopted reporting tools. VODAN programmes developed an 

automated extraction script that aggregated data into DHIS2 to 

automatically derive the required reports for health facilities. Figure 7 

illustrates the interoperability of the VODAN platform with the 

standard HMIS system, DHIS2. The DHIS2 JSON template data 

from the VODAN platform was aggregated and submitted using its 

API. 

Figure 7. VODAN platform to DHIS2 interoperability workflow 

DHIS2 JSON template data from the data storage component: 

Document database and triple store 

The data storage component manages various data types and stores 

data locally. Data was stored in the form of CSV files and legacy 

relational database systems. Those datasets and newly created data 

were transformed and stored in the MongoDB document database as 

JSON-LD and as a knowledge graph in a triple store using 

AllegroGraph. Data storage localisation was one of the key principles 
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in FAIR data production and was implemented per FAIR-OLR 

principles.  

Varying modus operandi for deployment  

Different deployment and operational options were employed in 

various countries and sites within countries, depending on the 

availability of infrastructure and data stewardship expertise. In areas 

where capacity was limited and deployment needed to be accelerated, 

the system was created as a virtual image that included all necessary 

components. Although deployment was facilitated through the virtual 

image approach, performance was a challenge because the system 

only used the system portion allocated to the virtual machine. 

We also tested the system’s installation on a central server, following 

a client-server architecture. Large hospitals with numerous data 

collection points, where making the system available in each unit was 

not feasible, used the central server approach. Computers with low 

specifications and tablets were used to collect and store data on a 

central server at the health facilities. In low-resource settings with 

limited infrastructure and network accessibility, a lightweight system 

was developed and integrated into bulk upload tools. This system 

enabled the curation of data in the form of RDF triples, which were 

efficiently transferred to the triple store and MongoDB. Curated data 

were accessible through a dashboard, facilitating visualisation and 

real-time analyses. 

Discussion 

Through this implementation research, we explored the dimensions 

of applying FAIR principles to patient data for both healthcare-

related surveillance and personalised care decisions in the context of 

antenatal care at the health facility, across health facilities, and at the 

single data entry level. Our work demonstrates the potential of 

federated health data reuse to address disparities and inequalities in 

health in dynamic, resource-limited contexts while preserving data 

sovereignty. We validated the VODAN Africa approach for regions 

under a digital blackout due to war. We demonstrated the utility of 

federated data reuse for cross-border infectious disease surveillance 

by performing complex queries on participant-level data securely 

retained by health facilities. This demonstrates the benefits of 
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federated reuse for regulatory compliance, data sovereignty, and real-

time, patient-level, cross-border surveillance. 

The implementation of the VODAN Africa approach across 

countries and facilities enabled an in-depth analysis of the design 

challenges and tooling requirements necessary to adapt cutting-edge 

technologies to low-digital-resource environments in Africa, at both 

large and small health facilities, in various regulatory environments. 

The findings contribute to the broader discourse on data sovereignty 

and provide valuable insights for future research on the equitable 

application of FAIR principles within under-resourced communities. 

The proposed architecture presented in this study, along with the 

practices followed to implement it within different data siloes in a 

health facility and across health facilities, offers another perspective 

on how to make FAIRification possible in low-resource settings.  

Development of FAIR Supporting Resources 

FSRs are rapidly emerging as critical components of data 

management and interoperability. Identifying and understanding 

FSRs requires a systematic investigation to document their current 

landscape and practical applications effectively. 

Touré et al. (2023) used semantic web technologies and a fit-for-

purpose FAIRification strategy within the Swiss Personalized Health 

Network to enhance data accessibility and usability. Their approach 

involved the development of federated infrastructures that enable 

permissioned access to health data as secondary sources for research. 

By leveraging RDF, they facilitated data aggregation and exploration, 

thereby improving the interoperability and utility of health datasets. 

While ideally following the FAIR principles should make 

interoperability easier, there is still a need for harmonising 

FAIRification methods and best practices to maximise the value of 

FAIRification (Dos Santos Vieira et al., 2022). At the same time, there 

are no clear guidelines yet on how to measure how ‘FAIR’ levels of 

data are, also referred to as levels of FAIRness, and how to prioritise 

what to FAIRify and at what depth. Alharbi (2022) has usefully 

identified best-practice approaches to support the decision-making 

process. 
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Engineering ethnography 

The development of complex systems with multiple interactive 

components necessitates a well-structured architectural framework to 

meet key functional and operational requirements (Garlan, 2000). 

Addressing wicked, complex problems requires a co-creative 

engineering approach that actively involves diverse stakeholders. In 

this regard, engineering ethnography provides an effective method 

for gathering stakeholder input to ensure that system design aligns 

with real-world needs (Van Reisen et al., 2021). The development of 

the FAIR-OLR-based patient data platform was guided by 

community input and expertise from health facility professionals, 

ensuring that the system aligned with local healthcare needs and 

regulatory requirements. 

To implement research in real-world, diverse environments, it is 

essential to consider the ecological diversity of the problem (Van 

Reisen et al., 2021). This understanding facilitates a more targeted 

approach to problem identification and helps define the core 

components of an effective solution.  

Earlier research by the VODAN Africa research group, which 

explored the core of the patient data handling problem, was informed 

by lessons from the Ebola crisis in Liberia. When the crisis was under 

control, all the patient data had been removed from the country and 

was no longer under the government’s control. The analysis of this 

experience emphasised the necessity of localising data and systems to 

enhance efficiency, accessibility, and data sovereignty (Van Reisen et 

al., 2021).  

The retention of data within health facilities while allowing access for 

analytical purposes has facilitated the availability of medical data for 

research. Traditionally, such data remained confined to patient care 

within healthcare institutions, typically in paper-based formats. 

Aggregate data was compiled for DHIS2 reporting requirements, but 

this digitalisation of DHIS2 data had no impact on the decision-

making for patient care in the facilities; the insights from the DHIS2 

data were generally unavailable in the health facilities and the data was 

not sufficiently granular to produce insights that were relevant to 

support health workers decisions. The stakeholders engaged with the 
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study reported that DHIS2 tooling itself lacked local sovereignty and 

ownership. 

For ease of management, cost efficiency, and the aggregation needs 

of data system providers, many implementations continue to rely on 

relatively centralised computing models. In contrast to these 

assumptions, this research demonstrates that federated data 

infrastructures have significant potential for tracking, monitoring, and 

addressing clinical issues, while enabling data utilisation for research 

both during and after patient care. More research is needed to ensure 

the usability of the systems at the local level. The successful 

implementation of a federated data system requires consideration of 

enabling supporting structures, including substantial data stewardship 

programmes, infrastructure development, community engagement, 

and governance frameworks to ensure security, scalability, and ethical 

data use, as well as tools to handle access control and permissions for 

data access. 

Theoretical insights for further research 

The findings from the current study suggest that control over data 

must be complemented by control over the tools used to manage and 

process it, thereby ensuring greater data sovereignty and technological 

autonomy. In other words, this study found that control over data 

requires control over the tools to handle the data.  

This part of the discussion addresses: the design of the overall 

platform; the engineering of tools to make the platform operational 

with different elements connecting the components of the platform; 

the blending of FAIR by design and FAIR by increment; and 

adaptation for final deployment in varying context situations.  

Design of the overall platform based on data visiting 

Having established the requirements and specifications set by the 

community, following its analysis of the core of the problem, the next 

phase of the study involved the technical engineering of localised 

tools and in-residence data management, reinforcing the principles of 

data ownership, interoperability, and regulatory compliance within 

the regional healthcare ecosystem. This architecture relies on the 

principle of data visiting.  
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In contrast to data sharing, which requires the transfer of data to a 

centralised location outside of health facilities, data visiting aligns with 

the FAIR and FAIR-OLR principles by ensuring that data remains 

accessible without compromising ownership, security, or regulatory 

compliance. Remote querying techniques such as SPARQL and 

federated data analytics are commonly used to enable data visiting in 

healthcare research, epidemiology, and cross-border collaborations. 

Table 1. A comparison of data sharing and data visiting 

Concept Definition Key characteristics 

Data 
sharing 

The process of 
transferring data from 
one entity to another 
often involves 
duplicating or moving 
datasets. 

Data is physically copied, transferred, 

or downloaded. It requires agreements 

on data ownership, security, and 

compliance. Data sharing increases 

risks related to privacy, security 

breaches, and unauthorised use. 

Data 

visiting 

A model in which data 

remains at its original 

location, and external 

users send queries to 

access and analyse it 

remotely. 

Data never moves; only results of 

queries are returned. Data visiting 

supports federated learning and remote 

analytics. It enhances data sovereignty, 

privacy, and regulatory compliance. It 

requires interoperable and secure 

infrastructures. 

The key distinction between data sharing and data visiting lies in how 

data is accessed and controlled. Data visiting refers to a privacy-

preserving approach in which data remains at its source and, instead 

of being transferred, researchers or algorithms visit the data through 

remote querying or federated analytics. This method is beneficial in 

sensitive domains such as healthcare, where data protection principles 

restrict direct data sharing. 

Data visiting enhances data sovereignty and ensures that data remains 

under the control of the entity that owns them. It enhances security 

and privacy preservation by complying with data privacy regulations 

and mitigating the risks associated with data movement. It also 

supports federated learning, enabling collaborative research and AI 

model training without exposing sensitive, participant-level data. 
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Finally, data visiting reduces duplication and storage costs, as it 

eliminates the need for multiple copies of large datasets. 

The implementation of a data-visiting framework and semantic 

interoperability across healthcare facilities has demonstrated the 

feasibility of integrating data-driven insights to enhance clinical 

decision-making for health workers at the point of care. 

Simultaneously, these frameworks facilitate collaboration at regional, 

national, and international levels, enabling the generation of broader 

health insights. We found that, in a data-visiting, federated 

framework, smaller healthcare facilities can leverage high-quality 

machine learning diagnostic models that are securely trained on large-

scale datasets from major hospitals, thereby enhancing diagnostic 

accuracy and clinical decision-making in settings with limited data. 

These findings present a significant opportunity for future research, 

particularly in exploring how larger hospitals can provide relevant, 

data-driven insights to support decision-making in smaller clinics. 

Further investigation is required to fully realise the potential for these 

collaborative, AI-driven healthcare models. 

Engineering of tools and standardisation of common data models 

The federated reuse of participant-level data from disparate systems 

necessitates standardisation, which requires a common data model 

for data exchange, such as FHIR. In observational health research, 

standardisation enhances data quality and the efficiency of cross-

database comparisons (Voss et al., 2015). Cross-standard 

collaboration, as between FHIR and OMOP/SNOMED, can further 

enhance such standardisation to strengthen interoperability within 

and across communities. This study demonstrated that the use of 

controlled vocabularies and semantic ontologies in triple-reading 

machine-readable RDF syntax facilitates the computation of sensitive 

data stored in a federated manner across facilities and countries. The 

study found that the standardisation workflow could be deployed in 

the African digital health data context. 

Blending FAIR by design and FAIR by increment  

While current FAIRification efforts often focus on the retrospective 

implementation of FAIR, this work focuses on De Novo 

FAIRification, also known as FAIR-by-design, blended with 
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techniques from FAIR-by-increment workflows. Existing datasets 

were FAIRified through bulk upload, demonstrating the possibility of 

integrating De Novo and incremental FAIRification workflows.  

The combination of De Novo FAIRification workflows and FAIR by 

increment workflows developed in this project offers insights into 

how high-quality interoperable data can be delivered along with 

robust data provenance can be achieved. The blending demonstrates 

the potential for data handling in one place, where a single data entry 

can be used to achieve this. Integrating rich metadata templates 

during data production ensured structured and standardised data 

management. Data was stored in a triple store, enabling remote 

SPARQL queries, execution of analytics tasks, and implementation of 

multiple functional data processing workflows. 

Federated data and systems can achieve interoperability by sharing 

structured knowledge through a knowledge graph. In this research, 

knowledge graphs were constructed from FAIR-compliant patient 

data, which included both De Novo FAIRified datasets and legacy 

data that had been incrementally FAIRified. 

Conditions for deployment in varying context situations 

Graph databases serve as a foundational technology for storing 

knowledge graphs, offering more efficient data merging and mapping 

compared to relational databases, which require rigorous referential 

integrity management. In relational databases, data integration relies 

on the use of primary and foreign keys, as well as an understanding 

of the cardinality of relationships between tables. In contrast, triple 

stores store data in the form of triples, which can be easily appended 

and combined with minimal effort, enhancing scalability and 

flexibility in data integration. 

Document databases such as MongoDB were employed during the 

FAIRification process due to their real-time data storage and retrieval 

capabilities. MongoDB’s schema-flexible structure facilitates efficient 

data storage, access, and scalability, making it well-suited for handling 

heterogeneous datasets (Chauhan & Bansal, 2017). 

The platform was designed to facilitate interoperability and support 

the generation of new knowledge through inference and the 

utilisation of relationships in linked data using various data analytics 
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tools. Remote access via distributed queries and federated analytics 

enabled data utilisation while adhering to data protection regulations, 

although further refinement of these mechanisms is required. To fully 

leverage these capabilities, it is essential to implement robust security 

measures and comprehensive data privacy protections to ensure 

compliance and safeguard sensitive information. 

Conclusion 

Grounded in the FAIR principles and the need for Localization, 

Ownership, and Regulatory Compliance (FAIR-OLR), the VODAN-

Africa research group developed and implemented a system capable 

of curating and managing FAIR data. This system was deployed 

across 74 health facilities in Africa, enabling the production and use 

of FAIR data at the point of care and service delivery. 

This study allowed for an examination of the successes and challenges 

of software development in environments that differ significantly 

from mainstream implementation settings, such as those in Europe 

and the United States, where FAIR principles are widely promoted. 

Best practices for FAIR biomedical data remain disproportionately 

skewed toward Western nations, with low- and middle-income 

countries (LMICs) underrepresented in the FAIR implementation 

landscape (Bezuidenhout, 2020).  

The study highlighted the successful deployment of a federated 

architecture for managing sensitive patient data, localised and retained 

in-residence, across eight African countries. The research explored 

the development of an overarching platform, the integration and 

enhancement of its components, and its subsequent deployment to 

realise De Novo FAIRification. Each of the 74 health facilities in 

which the system was implemented had its own distinct data entry 

forms prepared for one-time data input. This approach ensured the 

production of FAIR data enriched with semantic and machine-

readable features.  

Conducted as an ethnographic study of engineering implementation, 

the research objective was to test the feasibility of using the FAIR 

Guidelines for patient data curation. The implementation focused on 

data curation for ANC, OPD, and COVID-19 by the data clerks at 

participating health facilities. A dashboard was provided to each 
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health facility to generate insights from the data curated in the health 

facility. A cross-country dashboard showed the surveillance insights 

generated through federated data reuse from participant repositories. 

The surveillance was conducted across borders, in full compliance 

with specific regulations in each location and under the control of the 

health facility. 

This experience provided valuable insights into the tools and 

methodologies developed during the implementation process. 

Importantly, the success highlighted the potential of federated 

architectures, supported by lean microservices, suitable for low-

resource settings. The result of this research offers documented 

practices that can be adopted globally and locally by other 

implementers. It laid the groundwork for federated data curation, 

infrastructure, and data pipelines.  

Various adaptations were documented to address the unique resource 

constraints and regulatory frameworks of the different countries. This 

is the first step towards establishing a health data environment for a 

Personal Health Train setup, supported by federated AI and machine 

learning in Africa. This research has the potential to inform the 

development of FAIRification processes in various settings, adapted 

to local contextual conditions. 
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